Graphs with maximum degree 6 are acyclically 11-colorable

نویسنده

  • Hervé Hocquard
چکیده

An acyclic k-coloring of a graph G is a proper vertex coloring of G, which uses at most k colors, such that the graph induced by the union of every two color classes is a forest. In this note, we prove that every graph with maximum degree six is acyclically 11-colorable, thus improving the main result of [12].

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Acyclic edge coloring of subcubic graphs

An acyclic edge coloring of a graph is a proper edge coloring such that there are no bichromatic cycles. The acyclic chromatic index of a graph is the minimum number k such that there is an acyclic edge coloring using k colors and is denoted by a(G). From a result of Burnstein it follows that all subcubic graphs are acyclically edge colorable using 5 colors. This result is tight since there are...

متن کامل

Graphs with maximum degree 5 are acyclically 1 7 - colorable ∗ 2 Alexandr

9 An acyclic coloring is a proper coloring with the additional property that the union of 10 any two color classes induces a forest. We show that every graph with maximum degree at 11 most 5 has an acyclic 7-coloring. We also show that every graph with maximum degree at 12 most r has an acyclic (1 + b (r+1) 2 4 c)-coloring. 13

متن کامل

Acyclic Choosability of Graphs with Small Maximum Degree

A proper vertex coloring of a graph G = (V, E) is acyclic if G contains no bicolored cycle. A graph G is L-list colorable if for a given list assignment L = {L(v) : v ∈ V }, there exists a proper coloring c of G such that c(v) ∈ L(v) for all v ∈ V . If G is L-list colorable for every list assignment with |L(v)| ≥ k for all v ∈ V , then G is said k-choosable. A graph is said to be acyclically k-...

متن کامل

Acyclically 3-Colorable Planar Graphs

In this paper we study the planar graphs that admit an acyclic 3-coloring. We show that testing acyclic 3-colorability is NP-hard, even for planar graphs of maximum degree 4, and we show that there exist infinite classes of cubic planar graphs that are not acyclically 3-colorable. Further, we show that every planar graph has a subdivision with one vertex per edge that admits an acyclic 3-colori...

متن کامل

Acyclic coloring of graphs with maximum degree five

An acyclic k-coloring of a graph G is a proper vertex coloring of G which uses at most k colors such that the graph induced by the union of every two color classes is a forest. In this paper, we mainly prove that every 5-connected graph with maximum degree five is acyclically 8-colorable, improving partially [5].

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Inf. Process. Lett.

دوره 111  شماره 

صفحات  -

تاریخ انتشار 2011