Graphs with maximum degree 6 are acyclically 11-colorable
نویسنده
چکیده
An acyclic k-coloring of a graph G is a proper vertex coloring of G, which uses at most k colors, such that the graph induced by the union of every two color classes is a forest. In this note, we prove that every graph with maximum degree six is acyclically 11-colorable, thus improving the main result of [12].
منابع مشابه
Acyclic edge coloring of subcubic graphs
An acyclic edge coloring of a graph is a proper edge coloring such that there are no bichromatic cycles. The acyclic chromatic index of a graph is the minimum number k such that there is an acyclic edge coloring using k colors and is denoted by a(G). From a result of Burnstein it follows that all subcubic graphs are acyclically edge colorable using 5 colors. This result is tight since there are...
متن کاملGraphs with maximum degree 5 are acyclically 1 7 - colorable ∗ 2 Alexandr
9 An acyclic coloring is a proper coloring with the additional property that the union of 10 any two color classes induces a forest. We show that every graph with maximum degree at 11 most 5 has an acyclic 7-coloring. We also show that every graph with maximum degree at 12 most r has an acyclic (1 + b (r+1) 2 4 c)-coloring. 13
متن کاملAcyclic Choosability of Graphs with Small Maximum Degree
A proper vertex coloring of a graph G = (V, E) is acyclic if G contains no bicolored cycle. A graph G is L-list colorable if for a given list assignment L = {L(v) : v ∈ V }, there exists a proper coloring c of G such that c(v) ∈ L(v) for all v ∈ V . If G is L-list colorable for every list assignment with |L(v)| ≥ k for all v ∈ V , then G is said k-choosable. A graph is said to be acyclically k-...
متن کاملAcyclically 3-Colorable Planar Graphs
In this paper we study the planar graphs that admit an acyclic 3-coloring. We show that testing acyclic 3-colorability is NP-hard, even for planar graphs of maximum degree 4, and we show that there exist infinite classes of cubic planar graphs that are not acyclically 3-colorable. Further, we show that every planar graph has a subdivision with one vertex per edge that admits an acyclic 3-colori...
متن کاملAcyclic coloring of graphs with maximum degree five
An acyclic k-coloring of a graph G is a proper vertex coloring of G which uses at most k colors such that the graph induced by the union of every two color classes is a forest. In this paper, we mainly prove that every 5-connected graph with maximum degree five is acyclically 8-colorable, improving partially [5].
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Inf. Process. Lett.
دوره 111 شماره
صفحات -
تاریخ انتشار 2011